

Mark Scheme (Results)

January 2013

GCE Mechanics M2 (6678/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications. Alternatively, you can get in touch with us using the details on our contact us page at

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013 Publications Code UA034765 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

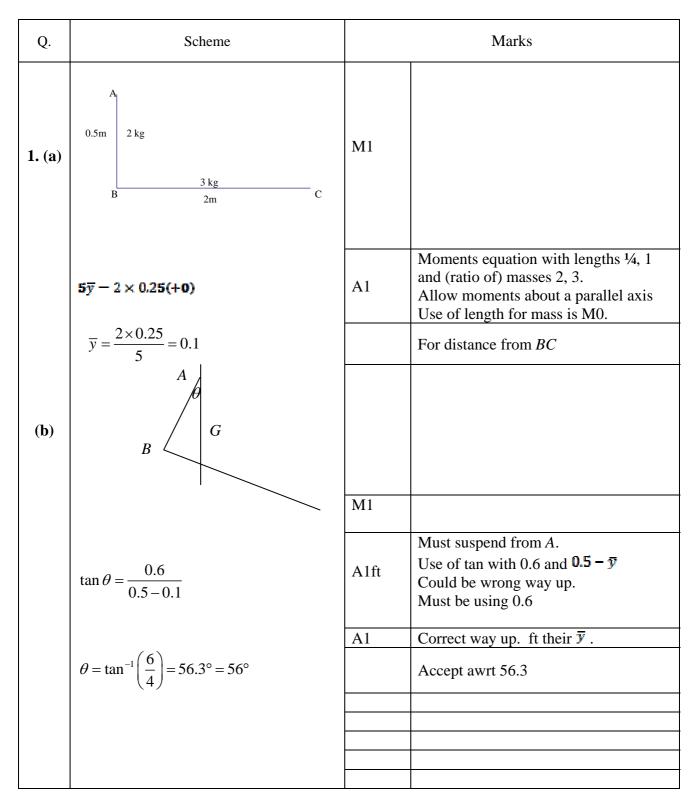
General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.


- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[n]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.

PMT

- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of '0' or '1' for each mark, or "trait", as shown:

	0	1
aM		•
aA	•	
bM1		•
bA1	۲	
bB	۲	
bM2		•
bA2		•

January 2013 6678 M2 Mark Scheme

Q.	Scheme	Marks	
2 (a)	$\xrightarrow{0.4 \text{ m s}^{-2}}$ $R \xleftarrow{1800 \text{ kg}} \xrightarrow{T}$	B1	
	$T = \frac{30000}{20} (=1500)$	M1	Use of $P = Fv$
	T - R = 1800a	A1	Equation of motion. Need all 3 terms. Condone sign errors
	$T - R = 1800 \times 0.4$ R = 1500 - 1800 × 0.4 = 780	A1	Equation correct (their T) Only
(b)	$N \rightarrow 20 \text{ m s}^{-1}$ $780 \leftarrow 1$ $780 \leftarrow 1$ 1800 g	M1	
	$T - 1800g\sin\alpha - R = 0$	A1	Equation of motion. Need all 3 terms. Weight must be resolved. Condone cos for sin. Condone sign errors Correct equation. Allow with <i>R</i> not substituted or with their <i>R</i> .
	$T = 1800 \times \frac{1}{12}g + 780$	DM1	
	Power = $\left(1800 \times \frac{1}{12}g + 780\right) \times 20$	A1	Use of $P = Tv$
		A1	Correctly substituted equation (for their <i>R</i>)
	= 45000 W or 45 kW		cao

Q	Scheme		Marks
3	P R $2 m$ B $0.5 m$ $0.5 m$ C R		
	$A \qquad F = \mu N$	B1	Used. Condone an inequality.
	$R(\uparrow) \qquad 18g + 60g = N$	M1	Resolve vertically
	$=78g$ $R(\rightarrow) R = F = \mu N$	A1	
Р	$2.5 \times 18g \cos \alpha + 3 \times 60g \cos \alpha = 5F \sin \alpha$	M1A2	Moments equation. Condone sign errors. Condone sin/cos confusion
4	$18g \times 2.5 \cos \alpha + 60g \times 3 \cos \alpha = R \times 5 \sin \alpha$		-1 each error
2	$\frac{1}{2}\cos\alpha \times 18g + 3\sin\alpha F + 2\sin\alpha R = 3\cos\alpha N$		
3 V	$5\cos\alpha N = 5\sin\alpha F + 2.5\cos\alpha \times 18g + 2\cos\alpha \times 60$ $60g \times \frac{1}{2}\cos\alpha + 2.5N\cos\alpha = 2.5R\sin\alpha + 2.5F\sin\alpha$		
,,	$\frac{2}{45 \times \frac{3}{5}g + 180 \times \frac{3}{5}g = 4R}$	DM1	Eliminate α . Dependent on the second M1.
	$R = \frac{135}{4}g$		
	$78g\mu = \frac{135}{4}g$	DM1	Equation in μ only. (Dependent on the first two M marks.)
	$\mu = \frac{135}{4 \times 78} = \frac{135}{312} = 0.432 = 0.43$	A1	NB g cancels. 0.43269, 225 45 520 , 104 , awrt 0.433
	NB If use just two moments equations, M1A2 for th Remaining marks as above.	e better at	Do not accept an inequality. tempt, M1A1 for the other.

Q	Scheme		Marks	
(a)	$t = \frac{5}{4}$		M1	1.25
(b)	$\mathbf{r} = (2t^2 - 5t)\mathbf{i} + 3t\mathbf{j}(+\mathbf{c})$			Integrate the velocity vector
			A1 DM1	NB Also correct to use suvat with $a = 4i$ and $u = -5i + 3j$. Correct
	$t = 0 2\mathbf{i} + 5\mathbf{j} = \mathbf{c}$		A1	Use \mathbf{r}_0 to find <i>C</i>
	$\mathbf{r} = (2t^2 - 5t)\mathbf{i} + 3t\mathbf{j} + (2\mathbf{i} + 3t\mathbf{j})\mathbf{i} + 3t\mathbf{j} + (2\mathbf{i} + 3t\mathbf{j})\mathbf{i} + $	- 5 j)		oe
	$(2t^2 - 5t + 2)\mathbf{i} + (3t + 5)\mathbf{j}$		B1	
(c)	$\mathbf{r}_{Q} = 11\mathbf{i} + 2\mathbf{j} - 2t\mathbf{i} + ct\mathbf{j}$			Correct j component of \mathbf{r}_Q
	$(11 - 2t)\mathbf{i} + (2 + ct)\mathbf{j}$			Do not actually require the whole thing - can answer the Q by considering only the j component.
	$\mathbf{r}_{P} = \left(2t^{2} - 5t + 2\right)\mathbf{i} + \left(3t + 2\right)\mathbf{i}$	5) j		
	$\mathbf{r}_{Q} = \mathbf{r}_{P} = d\mathbf{i} + 14\mathbf{j}$		$2t^2 - 5t$	
	3t + 5 = 14	$2l^2 - 3l - 9$	M1	Form an equation in <i>t</i> only
		(2l+3)(l-3) = 0 t=3		
	<i>t</i> = 3	A1 ft	A1	
	$2 + ct = 14 \implies c = 4$		A1 ft	Their <i>t</i>
	$d = 11 - 2 \times 3 = 5 \text{or} \\ d = 2 \times 3^2 - 5 \times 3 + 2 \Longrightarrow d =$	5		Their <i>t</i>
	$d = 2 \times 3^2 - 5 \times 3 + 2 \Longrightarrow d = 5$			
	Alt: $2t^2 - 5t + 2 = 11 - 2t = d \Longrightarrow t = \frac{11 - d}{2}$			
	$2\left(\frac{11-d}{2}\right)^2 - 5\left(\frac{11-d}{2}\right) + 2 = d,$			
	$d^{2} - 19d + 70 = 0 = (d - 5)(d - 14)$			

Q.	Scheme	Marks	
5	$U \text{ m s}^{-1}$ A 1.5 m θ 2 g		
(a)	$N = 2g\cos\theta = \frac{14}{25}g$	M1	Resolve perpendicular to plane. Condone trig confusion.
	$F = \mu N = \frac{5}{12} \times \frac{14}{25} g = \frac{7g}{30}$	B1	Correct value of <i>F</i> seen or implied
	Work done $=\frac{7}{30}g \times 1.5 = 3.43 = 3.4 \text{ J}$	DM1	Their $F \ge 1.5$
	1	A1	$\frac{7g}{20}$, 3.4 or 3.43 only Energy equation - needs all 3 terms,
(b)	$3.43 + 2g\sin\theta \times 1.5 = \frac{1}{2} \times 2U^2$	M1 A1	but condone sign errors & trig confusion. Must have an expression for the vertical height. Correct with one slip for their WD.
	<i>U</i> = 5.626 = 5.6	A1 A1	All correct for their WD 5.6 & 5.63 only
(c)	$v m s^{-1}$ 1.5 m		
	$2g\sin\theta \times 1.5 = 3.43 + \frac{1}{2} \times 2v^2$	M1	Energy equation - needs all three terms. Condone sign errors & trig. confusion. Extra terms give M0.
	$OR: \frac{1}{2} \times 2U^2 = 2 \times 3.43 + \frac{1}{2} \times 2v^2$ $v^2 = 3g \sin \theta - 3.43$	A1	All correct (their WD & U)
Alt	$v = 3g \sin \theta - 5.45$ v = 4.979 Speed = 5.0 m s ⁻¹	A1	Accept 4.98
(c)	$mg\sin\theta - F = ma$ and $v^2 = (u^2) + 2as$	M1	Equation of motion - needs all three terms. Condone sign errors & trig. confusion. Together with <i>suvat</i>
	$2g\sin\theta - \frac{7g}{30} = \frac{48g}{25} - \frac{7g}{30} = 2a$		
	$a = \frac{253g}{300} = 8.26$	A1	
	$v^2 = 24.794$, $v = 5.0$	A1	Accept 4.98

Q.	Scheme	Marks		
6 (a)	$2 = -2u\sin\theta + \frac{1}{2}g \times 4$	M1	Vertical distance. Condone sign errors. Must have used $t = 2$, but could be using $u_y = u \sin \theta$	
	$\left(-2 = u\sin\theta t - \frac{1}{2}gt^{2}\right)$ $u\sin\theta = g - 1$	A1	All correct	
	$2u\cos\theta = 8 (u\cos\theta = 4)$ $(u\cos\theta t = 8)$	B1	Horizontal distance. Accept $u_x = 4$ o.e.	
	$\tan\theta = \frac{g-1}{4} = 2.2 *$	M1	Divide to obtain expression for tan θ	
		A1	Given answer It is acceptable to quote and use the equation for the projectile path. Incorrect equation is 0/5.	
(b)	$u\cos\theta = 4$	M1	Use the horizontal distance and θ to find <i>u</i> 9.67 or 9.7	
	$u = \frac{4}{\cos \theta} = 9.66 = 9.7$	A1	NB θ = 65.6° leading to 9.68 is an accuracy penalty.	
	OR use components from (a) and Pythagoras.			
(c)	$6 = (1 - g)T + \frac{1}{2} \times 9.8T^2$	M1	Equation for vertical distance = ± 6 to give a quadratic in <i>T</i> . Allow their u_y	
	$4.9T^{2} - 8.8T - 6 = 0$ $T = \frac{8.8 \pm \sqrt{\left[\left(- \right) 8.8 \right]^{2} + 24 \times 4.9}}{9.8}$ T = 2.323 = 2.32 or 2.3	DM1 A1	Solve a 3 term quadratic 2.3 or 2.32 only	
(d)	$v^{2} = 8.8^{2} + 2g \times 6$ or $v = -8.8 + gT$ v = 13.96	M1 A1	Use <i>suvat</i> to find vertical speed Correct equation their u_y , <i>T</i>	
	Horiz speed $= 4$			
	$\tan \alpha = \frac{v}{4}$	DM1	Correct trig. with their vertical speed to find the required angle.	
	$\alpha = 74.01 = 74^{\circ}$	A1 A1	Correct equation 74° or 74.0°. Allow 106.	
	Alternative:			
	$\frac{1}{2}m(9.6664)^2 + 6mg = \frac{1}{2}mv^2$	M1	Conservation of energy to find speed	
	v = 14.52719	A1 DM1	Correct method for α	
	$\cos \alpha = \frac{14.5}{14.5}$ $\alpha = 74.01 = 74^{\circ}$	A1 A1	Allow 106	

Q	Scheme	Marks		
7(a)	$\begin{array}{ccc} & u & & & 0 \\ A & & & B \\ m & 3m \\ \end{array}$		If the signs on their diagram and in their working are inconsistent, ignore the diagram. Penalise inconsistency between the two	
	$v \longleftarrow w$ $mu = -mv + 3mw$	M1	equations in the second accuracy mark. CLM. Allow for v in either direction. Needs all 3 terms. Condone sign errors. v in either direction. Ignore diagram if	
	u = -v + 3w	A1	equations "correct" but inconsistent with diagram.	
	eu = w + v	M1	Impact law. Must be the right way round, but condone sign errors	
		A1	Correct equation. Signs consistent with CLM equn.	
	$w = \frac{u}{4} (1 + e)$	DM1	Solve for <i>v</i> or <i>w</i> .	
		A1	One correct	
	$v = -w + eu = \frac{u}{4}(3e - 1)$	A1	Both correct. $1 - 3e \rightarrow A0$ for v	
(b)	$\xrightarrow{u}_{4}(1+e) \xrightarrow{0} 0$ $B \qquad C$ $3m \qquad 4m$ $Y \qquad \rightarrow X$ $3mw = 4mX - 3mY$ $2ew = X + Y$ $7Y = W(8e - 3)$ $2m = 2 \qquad (1+e) \qquad 3^{3u}(1+e) \qquad 7W$	M1 A1ft B1ft DM1	If the signs on their diagram and in their working are inconsistent, ignore the diagram. Penalise inconsistency between the two equations in the B mark. CLM for their w . Correct unsimplified (their w) Impact law. Must be the right way up. Their w Solve for (7) Y	
(c)	Or $2ue(1+e) - \frac{3u}{4}(1+e) = 7Y$ $\rightarrow e > \frac{3}{8}$ $Y > 0 \rightarrow \frac{3}{8} < e \le \frac{1}{2}$ $\frac{u}{28}(1+e)(8e-3) > \frac{u}{4}(3e-1)$	A1 A1 M1	NB No longer ft. Condone <. For a second collision their <i>Y</i> > their <i>v</i>	
	$\frac{u}{28}(1+e)(8e-3) > \frac{u}{4}(3e-1)$ $2e^{2} - 4e + 1 > 0$ $e = \frac{4 \pm \sqrt{16-8}}{4} = 1.707, \ 0.293$	DM1	Obtain the critical values	
	$2e^2 - 4e + 1 < 0$ for $\frac{3}{8} < e \le \frac{1}{2}$ so no second collision.	A1	Compare 0.293 (o.e.) with $\frac{3}{8}$ to reach correct conclusion for correct reason.	

PMT

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA034765 January 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

